

Colophon
Copyright © 2022-2023 Raspberry Pi Ltd

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0

International (CC BY-ND).

build-date: 2023-06-14

build-version: a6fe703-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be

found in the Raspberry Pi Pico C/C++ SDK book. Source code included in the documentation is

Copyright © 2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-

Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use

of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties

expressed in them.

Connecting to the Internet with Raspberry Pi Pico W

Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Table of contents
Colophon . 1

Legal disclaimer notice . 1

1. About Raspberry Pi Pico W . 3

2. Getting on the internet with the C SDK. 5

2.1. Installing the SDK and examples. 5

2.2. Building an SDK example . 5

2.3. Creating your own project . 8

2.3.1. Going further. 10

2.4. Which hardware am I running on?. 10

3. Getting on the internet with MicroPython . 12

3.1. Getting MicroPython for Raspberry Pi Pico W. 12

3.2. Installing MicroPython on Raspberry Pi Pico W . 12

3.3. Connecting from a Raspberry Pi over USB. 13

3.3.1. Using an integrated development environment (IDE) . 14

3.3.2. Remote access via serial port . 14

3.4. The on-board LED . 15

3.5. Installing modules. 15

3.6. Connecting to a wireless network. 16

3.6.1. Connection status codes . 17

3.6.2. Setting the country. 17

3.6.3. Power-saving mode . 17

3.7. The MAC address . 18

3.8. Making HTTP requests. 18

3.8.1. HTTP with sockets. 18

3.8.2. HTTP with urequests. 19

3.8.3. Ensuring robust connections . 19

3.9. Building HTTP servers . 20

3.9.1. A simple server for static pages . 21

3.9.2. Controlling an LED via a web server . 22

3.9.3. An asynchronous web server . 24

3.10. Running iperf . 26

3.11. Which hardware am I running on? . 26

4. About Bluetooth . 28

4.1. More about Bluetooth LE . 28

4.1.1. Protocols and profiles . 28

4.1.2. The GAP . 29

4.1.3. The GATT . 29

4.1.4. Services and characteristics . 29

4.1.5. UUIDs. 30

5. Working with Bluetooth and the C SDK . 31

5.1. An example Bluetooth service. 31

5.1.1. Creating a temperature service peripheral . 31

5.2. Availability of other example code . 33

6. Working with Bluetooth in MicroPython . 34

6.1. Advertsing a Bluetooth service . 34

6.2. An example Bluetooth service. 36

6.2.1. Creating a temperature service peripheral . 36

6.2.2. Implementing a central device . 38

Appendix A: Building MicroPython from source. 44

Appendix B: Documentation release history . 45

Connecting to the Internet with Raspberry Pi Pico W

Table of contents 2

Chapter 1. About Raspberry Pi Pico
W
Raspberry Pi Pico W is a microcontroller board based on the Raspberry Pi RP2040 microcontroller chip.

Figure 1. The

Raspberry Pi Pico W

Rev3 board.

Raspberry Pi Pico W has been designed to be a low cost yet flexible development platform for RP2040, with the addition

of a 2.4GHz wireless interface and the following key features:

• RP2040 microcontroller with 2MB of external flash

• On board 2.4GHz wireless (802.11n) interface

• On board Bluetooth interface

◦ Support for Bluetooth LE Central and Peripheral roles

◦ Support for Bluetooth Classic

• Micro-USB port for power and data (and for reprogramming the flash)

• 40-pin 21mm×51mm 'DIP' style 1mm thick PCB with 0.1 inch through-hole pins also with edge castellations

◦ Exposes 26 multi-function 3.3V general purpose I/O (GPIO)

◦ 23 GPIO are digital-only, with 3 more which also support ADC

◦ Can be surface-mounted as a module

Apart from the addition of wireless networking, Raspberry Pi Pico W is very similar to Raspberry Pi Pico and, like all

RP2040-based boards, shares the same development environment. If you have not previously used an RP2040-based

board you can get started by reading Getting started with Raspberry Pi Pico if you’re intending to use our C SDK, or

Raspberry Pi Pico Python SDK if you’re thinking about using MicroPython.

Connecting to the Internet with Raspberry Pi Pico W

Chapter 1. About Raspberry Pi Pico W 3

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf

 NOTE

Full details of the Raspberry Pi Pico W can be found in the Raspberry Pi Pico W Datasheet.

 NOTE

By default libcyw43 is licensed for non-commercial use, but Pico W users, and anyone else who builds their product

around RP2040 and CYW43439, benefit from a free commercial-use license.

Connecting to the Internet with Raspberry Pi Pico W

Chapter 1. About Raspberry Pi Pico W 4

https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf
https://github.com/georgerobotics/cyw43-driver/blob/195dfcc10bb6f379e3dea45147590db2203d3c7b/LICENSE.RP

Chapter 2. Getting on the internet
with the C SDK
Wireless support for Raspberry Pi Pico W has been added to the C/C++ SDK.

 NOTE

If you have not previously used an RP2040-based board you can get started by reading Getting started with

Raspberry Pi Pico, while further details about the SDK along with API-level documentation can be found in the

Raspberry Pi Pico C/C++ SDK book.

2.1. Installing the SDK and examples

For full instructions on how to get started with the SDK see the Getting started with Raspberry Pi Pico book.

$ git clone https://github.com/raspberrypi/pico-sdk.git --branch master
$ cd pico-sdk
$ git submodule update --init
$ cd ..
$ git clone https://github.com/raspberrypi/pico-examples.git --branch master

 WARNING

If you have not initialised the tinyusb submodule in your pico-sdk checkout, then USB CDC serial, and other USB

functions and example code, will not work as the SDK will contain no USB functionality. Similarly, if you have not

initialised the cyw43-driver and lwip submodules in your checkout, then network-related functionality will not be

enabled.

2.2. Building an SDK example

Building the SDK examples, and other wireless code, requires you to specify your network SSID and password, like this:

$ cd pico-examples
$ mkdir build
$ cd build
$ export PICO_SDK_PATH=../../pico-sdk
$ cmake -DPICO_BOARD=pico_w -DWIFI_SSID="Your Network" -DWIFI_PASSWORD="Your Password" ..
Using PICO_SDK_PATH from environment ('../../pico-sdk')
PICO_SDK_PATH is /home/pi/pico/pico-sdk
 .
 .
 .
-- Build files have been written to: /home/pi/pico/pico-examples/build
$

Connecting to the Internet with Raspberry Pi Pico W

2.1. Installing the SDK and examples 5

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

 NOTE

The command line flags -DWIFI_SSID="Your Network" -DWIFI_PASSWORD="Your Password" are used by the pico-examples to

set the SSID and password to the call to cyw43_arch_wifi_connect_xxx() to connect to your wireless network.

To then build a basic example for Raspberry Pi Pico W that will scan for nearby wireless networks, you can do:

$ cd pico_w/wifi_scan
$ make
PICO_SDK_PATH is /home/pi/pico-sdk
PICO platform is rp2040.
Build type is Release
PICO target board is pico_w.
 .
 .
 .
[100%] Built target picow_scan_test_background
$

Along with other targets, we have now built a binary called picow_scan_test_background.uf2, which can be dragged onto the

RP2040 USB mass storage device

This binary will scan for wireless networks using the Raspberry Pi Pico W’s wireless chip.

The fastest method to load software onto a RP2040-based board for the first time is by mounting it as a USB mass

storage device. Doing this allows you to drag a file onto the board to program the flash. Go ahead and connect the

Raspberry Pi Pico W to your Raspberry Pi using a micro-USB cable, making sure that you hold down the BOOTSEL

button as you do so, to force it into USB mass storage mode.

If you are running the Raspberry Pi Desktop the Raspberry Pi Pico W should automatically mount as a USB mass

storage device. From here, you can drag-and-drop the UF2 file onto the mass storage device. RP2040 will reboot,

unmounting itself as a mass storage device, and start to run the flashed code.

By default the code will report its results via serial UART.

 IMPORTANT

The default UART pins are configured on a per-board basis using board configuration files. The default Raspberry Pi

Pico W UART TX pin (out from Pico W) is pin GP0, and the UART RX pin (in to Pico W) is pin GP1.

To see the text, you will need to enable UART serial communications on the Raspberry Pi host. To do so, run raspi-

config:

$ sudo raspi-config

and go to Interfacing Options → Serial and select "No" when asked "Would you like a login shell to be accessible over

serial?", then "Yes" when asked "Would you like the serial port hardware to be enabled?" You should see something like

Figure 2.

Connecting to the Internet with Raspberry Pi Pico W

2.2. Building an SDK example 6

Figure 2. Enabling a

serial UART using

raspi-config on the

Raspberry Pi.

Leaving raspi-config you should choose "Yes" and reboot your Raspberry Pi to enable the serial port.

You should then wire the Raspberry Pi and the Raspberry Pi Pico W together with the following mapping:

Raspberry Pi Raspberry Pi Pico W

GND (Pin 14) GND (Pin 3)

GPIO15 (UART_RX0, Pin 10) GP0 (UART0_TX, Pin 1)

GPIO14 (UART_TX0, Pin 8) GP1 (UART0_RX, Pin 2)

See Figure 3.

Figure 3. A Raspberry

Pi 4 and the Raspberry

Pi Pico with UART0

connected together.

Once the two boards are wired together you should install minicom if you have not already done so:

$ sudo apt install minicom

and open the serial port:

Connecting to the Internet with Raspberry Pi Pico W

2.2. Building an SDK example 7

$ minicom -b 115200 -o -D /dev/serial0

You should see the results of our wireless scanning being printed to the console, see Figure 4.

 TIP

To exit minicom, use CTRL-A followed by X.

Figure 4. Results of

our wireless scanning

in the console

2.3. Creating your own project

Go ahead and create a directory to house your test project sitting alongside the pico-sdk directory,

$ ls -la
total 16
drwxr-xr-x 7 aa staff 224 6 Apr 10:41 ./
drwx------@ 27 aa staff 864 6 Apr 10:41 ../
drwxr-xr-x 10 aa staff 320 6 Apr 09:29 pico-examples/
drwxr-xr-x 13 aa staff 416 6 Apr 09:22 pico-sdk/
$ mkdir test
$ cd test

and then create a test.c file in the directory,

 1 #include <stdio.h>
 2
 3 #include "pico/stdlib.h"
 4 #include "pico/cyw43_arch.h"
 5
 6 char ssid[] = "A Network";①
 7 char pass[] = "A Password";②
 8
 9 int main() {
10 stdio_init_all();
11

Connecting to the Internet with Raspberry Pi Pico W

2.3. Creating your own project 8

12 if (cyw43_arch_init_with_country(CYW43_COUNTRY_UK)) {
13 printf("failed to initialise\n");
14 return 1;
15 }
16 printf("initialised\n");
17
18 cyw43_arch_enable_sta_mode();
19
20 if (cyw43_arch_wifi_connect_timeout_ms(ssid, pass, CYW43_AUTH_WPA2_AES_PSK, 10000)) {
21 printf("failed to connect\n");
22 return 1;
23 }
24 printf("connected\n");
25 }

1. Replace A Network with the SSID name of your wireless network.

2. Replace A Password with the password for your wireless network.

along with a CMakeLists.txt file,

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(test_project C CXX ASM)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
pico_sdk_init()

add_executable(test
 test.c
)

pico_enable_stdio_usb(test 1)
pico_enable_stdio_uart(test 1)

pico_add_extra_outputs(test)

target_include_directories(test PRIVATE ${CMAKE_CURRENT_LIST_DIR})

target_link_libraries(test pico_cyw43_arch_lwip_threadsafe_background pico_stdlib)

Then copy the pico_sdk_import.cmake file from the external folder in your pico-sdk installation to your test project folder,

$ cp ../pico-sdk/external/pico_sdk_import.cmake .

along with the lwipopts.h file needed by the lwIP stack.

$ cp ../pico-examples/pico_w/lwipopts_examples_common.h lwipopts.h

You should now have something that looks like this,

Connecting to the Internet with Raspberry Pi Pico W

2.3. Creating your own project 9

$ ls -la
total 32
drwxr-xr-x 6 aa staff 192B 29 Jun 18:11 ./
drwxr-xr-x 7 aa staff 224B 29 Jun 16:57 ../
-rw-r--r--@ 1 aa staff 379B 29 Jun 18:10 CMakeLists.txt
-rw-rw-r--@ 1 aa staff 3.3K 15 Jun 00:34 lwipopts.h
-rw-rw-r--@ 1 aa staff 3.1K 15 Jun 00:34 pico_sdk_import.cmake
-rw-r--r--@ 1 aa staff 427B 29 Jun 17:03 test.c

and can build it as we did before with our previous example in the last section.

$ mkdir build
$ cd build
$ export PICO_SDK_PATH=../../pico-sdk
$ cmake -DPICO_BOARD=pico_w ..
$ make

Afterwards unplug your Raspberry Pi Pico W from your computer if it is plugged in already. Then push and hold the

BOOTSEL button while plugging it back into your computer. Then drag and drop the test.uf2 binary onto the RPI-RP2

mass storage volume which will mount on your desktop.

Open the serial port:

$ minicom -b 115200 -o -D /dev/serial0

and you should see the a message indicating that the Pico W has connected to your wireless network.

2.3.1. Going further

More information on the C SDK can be found in the Raspberry Pi Pico C/C++ SDK book. While information around lwIP

can be found on the project’s website. Example code can be found as part of the pico-examples Github repository.

2.4. Which hardware am I running on?

There is no direct method in the C SDK that can be called to allow software to discover whether it is running on a

Raspberry Pi Pico or a Pico W. However, it is possible to indirectly discover the type of underlying hardware. If the board

is powered via USB or VSYS, so 3v3_EN is not pulled low externally, with GPIO25 low, ADC3 will be around 0V for Raspberry

Pi Pico W and approximately 1/3 of VSYS for Raspberry Pi Pico.

Creating a test.c file,

 1 #include <stdio.h>
 2
 3 #include "pico/stdlib.h"
 4 #include "hardware/gpio.h"
 5 #include "hardware/adc.h"
 6
 7 int main() {
 8 stdio_init_all();
 9
10 adc_init();

Connecting to the Internet with Raspberry Pi Pico W

2.4. Which hardware am I running on? 10

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://savannah.nongnu.org/projects/lwip/
https://github.com/raspberrypi/pico-examples/tree/master/pico_w

11 adc_gpio_init(29);
12 adc_select_input(3);
13 const float conversion_factor = 3.3f / (1 << 12);
14 uint16_t result = adc_read();
15 printf("ADC3 value: 0x%03x, voltage: %f V\n", result, result * conversion_factor);
16
17 gpio_init(25);
18 gpio_set_dir(25, GPIO_IN);
19 uint value = gpio_get(25);
20 printf("GP25 value: %i", value);
21 }

alongside the following CMakeLists.txt file,

cmake_minimum_required(VERSION 3.13)

include(pico_sdk_import.cmake)

project(test_project C CXX ASM)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
pico_sdk_init()

add_executable(test
 test.c
)

target_link_libraries(test pico_stdlib hardware_adc hardware_gpio)

pico_enable_stdio_usb(test 1)
pico_enable_stdio_uart(test 1)

pico_add_extra_outputs(test)

in a project directory gives this for Raspberry Pi Pico W,

ADC3 value: 0x01c, voltage: 0.022559 V
GP25 value: 0

and this for an original Raspberry Pi Pico board,

ADC3 value: 0x2cd, voltage: 0.577661 V
GP25 value: 0

Connecting to the Internet with Raspberry Pi Pico W

2.4. Which hardware am I running on? 11

Chapter 3. Getting on the internet
with MicroPython
Wireless support for Raspberry Pi Pico W has been added to MicroPython. A pre-built binary, which can be downloaded

from the MicroPython section of the documentation website, should serve most use cases and comes with micropython-

lib pre-integrated into the binary.

 NOTE

If you have not previously used an RP2040-based board you can get started by reading Raspberry Pi Pico Python

SDK book.

3.1. Getting MicroPython for Raspberry Pi Pico W

Pre-built Binary

A pre-built binary of the latest MicroPython firmware is available from the MicroPython section of the

documentation site.

The fastest way to get MicroPython is to download the pre-built release binary from the Documentation pages. If you

can’t or don’t want to use the pre-built release — for example, if you want to develop a C module for MicroPython — you

can follow the instructions in Appendix A> to get the source code for MicroPython, which you can use to build your own

MicroPython firmware binary.

3.2. Installing MicroPython on Raspberry Pi Pico W

Raspberry Pi Pico W has a BOOTSEL mode for programming firmware over the USB port. Holding the BOOTSEL button

when powering up your board will put it into a special mode where it appears as a USB mass storage device. First make

sure your Raspberry Pi Pico W is not plugged into any source of power: disconnect the micro USB cable if plugged in,

and disconnect any other wires that might be providing power to the board, e.g. through the VSYS or VBUS pin. Now

hold down the BOOTSEL button, and plug in the micro USB cable (which hopefully has its other end plugged into your

computer).

A drive called RPI-RP2 should pop up. Go ahead and drag the MicroPython firmware.uf2 file onto this drive. This

programs the MicroPython firmware onto the flash memory on your Raspberry Pi Pico W.

It should take a few seconds to program the UF2 file into the flash. The board will automatically reboot when finished,

causing the RPI-RP2 drive to disappear, and boot into MicroPython.

When MicroPython boots for the first time, it will sit and wait for you to connect and tell it what to do. You can load a .py

file from your computer onto the board, but a more immediate way to interact with it is through what is called the read-

evaluate-print loop, or REPL.

There are two ways to connect to this REPL; so you can communicate with the MicroPython firmware on your board

over USB, or over the UART serial port on Raspberry Pi Pico W GPIOs.

Connecting to the Internet with Raspberry Pi Pico W

3.1. Getting MicroPython for Raspberry Pi Pico W 12

https://www.raspberrypi.com/documentation/microcontrollers/
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
https://www.raspberrypi.com/documentation/microcontrollers/
https://www.raspberrypi.com/documentation/microcontrollers/
https://www.raspberrypi.com/documentation/microcontrollers/

 NOTE

The MicroPython port for RP2040 does not expose a REPL over a UART port by default, please see Raspberry Pi Pico

Python SDK for more details of how to configure MicroPython to allow you to connect to the REPL over UART.

3.3. Connecting from a Raspberry Pi over USB

The MicroPython firmware is equipped with a virtual USB serial port which is accessed through the micro USB

connector on Raspberry Pi Pico W. Your computer should notice this serial port and list it as a character device, most

likely /dev/ttyACM0.

 TIP

You can run ls /dev/tty* to list your serial ports. There may be quite a few, but MicroPython’s USB serial will start

with /dev/ttyACM. If in doubt, unplug the micro USB connector and see which one disappears. If you don’t see

anything, you can try rebooting your Raspberry Pi.

You can install minicom to access the serial port:

$ sudo apt install minicom

and then open it as such:

$ minicom -o -D /dev/ttyACM0

Where the -D /dev/ttyACM0 is pointing minicom at MicroPython’s USB serial port, and the -o flag essentially means "just do

it". There’s no need to worry about baud rate, since this is a virtual serial port.

Press the enter key a few times in the terminal where you opened minicom. You should see this:

>>>

This is a prompt. MicroPython wants you to type something in, and tell it what to do.

If you press CTRL-D on your keyboard whilst the minicom terminal is focused, you should see a message similar to this:

MPY: soft reboot
MicroPython v1.18-524-g22474d25d on 2022-05-25; Raspberry Pi Pico W with RP2040
Type "help()" for more information.
>>>

This key combination tells MicroPython to reboot. You can do this at any time. When it reboots, MicroPython will print

out a message saying exactly what firmware version it is running, and when it was built. Your version number will be

different from the one shown here.

Connecting to the Internet with Raspberry Pi Pico W

3.3. Connecting from a Raspberry Pi over USB 13

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf

 NOTE

If you are working on an Apple Mac, so long as you’re using a recent version of macOS like Catalina, drivers should

already be loaded. Otherwise, see the manufacturers' website for FTDI Chip Drivers. Then you should use a Terminal

program to connect to Serial-over-USB (USB CDC). The serial port will show up as /dev/tty.usbmodem with a number

appended to the end.

If you don’t already have a Terminal program installed you can install minicom using Homebrew:

$ brew install minicom

and connect to the board as below.

$ minicom -b 115200 -o -D /dev/tty.usbmodem0000000000001

Other Terminal applications like CoolTerm or Serial can also be used.

3.3.1. Using an integrated development environment (IDE)

The MicroPython port to Raspberry Pi Pico W and other RP2040-based boards works with commonly-used development

environments. Thonny is the recommended editor. Thonny packages are available for Linux, MS Windows, and macOS.

After installation, using the Thonny development environment is the same across all three platforms. The latest release

of Thonny can be downloaded from thonny.org.

For full details on how to use the Thonny editor, see the section on using a development environment in the Raspberry

Pi Pico Python SDK book.

3.3.2. Remote access via serial port

It’s suggested you use the mpremote tool to access the device via the serial port.

$ pip install mpremote
$ mpremote connect list
/dev/cu.Bluetooth-Incoming-Port None 0000:0000 None None
/dev/cu.usbmodem22201 e660583883807e27 2e8a:0005 MicroPython Board in FS mode
$ mpremote connect port:/dev/cu.usbmodem22201
Connected to MicroPython at /dev/cu.usbmodem22201
Use Ctrl-] to exit this shell
>>>

With this you can run a script from your local machine directly on Raspberry Pi Pico W.

$ mpremote connect port:/dev/cu.usbmodem22201
$ mpremote run hello_world.py

Connecting to the Internet with Raspberry Pi Pico W

3.3. Connecting from a Raspberry Pi over USB 14

https://www.ftdichip.com/FTDrivers.htm
http://brew.sh
http://freeware.the-meiers.org/
https://apps.apple.com/us/app/serial/id877615577?mt=12
https://thonny.org/
https://thonny.org/
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf#using-an-ide
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf

 NOTE

For more information on mpremote see the documentation.

3.4. The on-board LED

Unlike the original Raspberry Pi Pico, the on-board LED on Pico W is not connected to a pin on RP2040, but instead to a

GPIO pin on the wireless chip. MicroPython has been modified accordingly. This means that you can now do:

>>> import machine
>>> led = machine.Pin("LED", machine.Pin.OUT)
>>> led.off()
>>> led.on()

or even:

>>> led.toggle()

to change the current state. However, if you now look at the led object:

>>> led
Pin(WL_GPIO0, mode=OUT)
>>>

You can also do the following:

>>> led = machine.Pin("LED", machine.Pin.OUT, value=1)

which will configure the led object, associate it with the on-board LED and turn the LED on.

 NOTE

Full details of the Raspberry Pi Pico W can be found in the Raspberry Pi Pico W Datasheet. WL_GPIO1 is connected to

the PS/SYNC pin on the RT6154A to allow selection of different operating modes, while WL_GPIO2 can be used to

monitor USB VBUS.

3.5. Installing modules

You can use the upip tool to install modules that are not present in the default MicroPython installation.

>>> import upip
>>> upip.install("micropython-pystone_lowmem")
>>> import pystone_lowmem
>>> pystone_lowmem.main()
Pystone(1.2) time for 500 passes = 402ms
This machine benchmarks at 1243 pystones/second

Connecting to the Internet with Raspberry Pi Pico W

3.4. The on-board LED 15

https://docs.micropython.org/en/latest/reference/mpremote.html
https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf
https://docs.micropython.org/en/latest/reference/packages.html
https://docs.micropython.org/en/latest/reference/packages.html

>>>

3.6. Connecting to a wireless network

We’re using the network library to talk to the wireless hardware:

 1 import network
 2 import time
 3
 4 wlan = network.WLAN(network.STA_IF)
 5 wlan.active(True)
 6 wlan.connect('Wireless Network', 'The Password')
 7
 8 while not wlan.isconnected() and wlan.status() >= 0:
 9 print("Waiting to connect:")
10 time.sleep(1)
11
12 print(wlan.ifconfig())

although more correctly, you should wait for the connection to succeed or fail in your code, and handle any connection

errors that might occur.

 1 import time
 2 import network
 3
 4 ssid = 'Wireless Network'
 5 password = 'The Password'
 6
 7 wlan = network.WLAN(network.STA_IF)
 8 wlan.active(True)
 9 wlan.connect(ssid, password)
10
11 # Wait for connect or fail
12 max_wait = 10
13 while max_wait > 0:
14 if wlan.status() < 0 or wlan.status() >= 3:
15 break
16 max_wait -= 1
17 print('waiting for connection...')
18 time.sleep(1)
19
20 # Handle connection error
21 if wlan.status() != 3:
22 raise RuntimeError('network connection failed')
23 else:
24 print('connected')
25 status = wlan.ifconfig()
26 print('ip = ' + status[0])

You can also disconnect and then connect to a different wireless network.

Connecting to the Internet with Raspberry Pi Pico W

3.6. Connecting to a wireless network 16

1 # Connect to another network
2 wlan.disconnect();
3 wlan.connect('Other Network', 'The Other Password')

For more information on the network.WLAN library see the library documentation.

3.6.1. Connection status codes

The values returned by the wlan.status() call are defined in the CYW43 wireless driver, and are passed directly through to

user-code.

// Return value of cyw43_wifi_link_status
#define CYW43_LINK_DOWN (0)
#define CYW43_LINK_JOIN (1)
#define CYW43_LINK_NOIP (2)
#define CYW43_LINK_UP (3)
#define CYW43_LINK_FAIL (-1)
#define CYW43_LINK_NONET (-2)
#define CYW43_LINK_BADAUTH (-3)

3.6.2. Setting the country

By default, the country setting for the wireless network is unset. This means that the driver will use a default world-wide

safe setting, which may mean some channels are unavailable.

>>> import rp2
>>> rp2.country()
'\x00\x00'
>>>

This can cause problems on some wireless networks. If you find that your Raspberry Pi Pico W does not connect to your

wireless network you may want to try setting the country code, e.g.

>>> rp2.country('GB')

3.6.3. Power-saving mode

By default the wireless chip will active power-saving mode when it is idle, which might lead it to being less responsive. If

you are running a server or need more responsiveness, you can change this by toggling the power mode.

1 import network
2
3 wlan = network.WLAN(network.STA_IF)
4 wlan.active(True)
5 wlan.config(pm = 0xa11140)

Connecting to the Internet with Raspberry Pi Pico W

3.6. Connecting to a wireless network 17

https://docs.micropython.org/en/latest/library/network.WLAN.html

3.7. The MAC address

The MAC is stored in the wireless chip OTP.

 1 import network
 2 import ubinascii
 3
 4 wlan = network.WLAN(network.STA_IF)
 5 wlan.active(True)
 6 mac = ubinascii.hexlify(network.WLAN().config('mac'),':').decode()
 7 print(mac)
 8
 9 # Other things you can query
10 print(wlan.config('channel'))
11 print(wlan.config('essid'))
12 print(wlan.config('txpower'))

 NOTE

We have to set the wireless active (which loads the firmware) before we can get the MAC address.

3.8. Making HTTP requests

You can take a low-level approach to HTTP requests using raw sockets, or a high-level approach using the urequests

library.

3.8.1. HTTP with sockets

 1 # Connect to network
 2 import network
 3
 4 wlan = network.WLAN(network.STA_IF)
 5 wlan.active(True)
 6 wlan.connect('Wireless Network', 'The Password')
 7
 8 # Should be connected and have an IP address
 9 wlan.status() # 3 == success
10 wlan.ifconfig()
11
12 # Get IP address for google.com
13 import socket
14 ai = socket.getaddrinfo("google.com", 80)
15 addr = ai[0][-1]
16
17 # Create a socket and make a HTTP request
18 s = socket.socket()
19 s.connect(addr)
20 s.send(b"GET / HTTP/1.0\r\n\r\n")
21
22 # Print the response
23 print(s.recv(512))

Connecting to the Internet with Raspberry Pi Pico W

3.7. The MAC address 18

3.8.2. HTTP with urequests

It is much simpler to use the urequests library to make an HTTP connection.

 1 # Connect to network
 2 import network
 3 wlan = network.WLAN(network.STA_IF)
 4 wlan.active(True)
 5 wlan.connect('Wireless Network', 'The Password')
 6
 7 # Make GET request
 8 import urequests
 9 r = urequests.get("http://www.google.com")
10 print(r.content)
11 r.close()

Support has been added for redirects.

1 import urequests
2 r = urequests.get("http://www.raspberrypi.com")
3 print(r.status_code) # redirects to https
4 r.close()

 NOTE

HTTPS works, but you should be aware that SSL verification is currently disabled.

The urequests library comes with limited JSON support.

>>> r = urequests.get("http://date.jsontest.com")
>>> r.json()
{'milliseconds_since_epoch': 1652188199441, 'date': '05-10-2022', 'time': '01:09:59 PM'}
>>>>

For more information on urequests see the library documentation.

 IMPORTANT

You must close the returned response object after making a request using the urequests library using

response.close(). If you do not, the object will not be garbage-collected, and if the request is being made inside a loop

this will quickly lead to a crash.

3.8.3. Ensuring robust connections

This partial example illustrates a more robust approach to connecting to a network using urequests.

 1 import time
 2 import network
 3 import urequests as requests
 4
 5 ssid = 'A Network'
 6 password = 'The Password'

Connecting to the Internet with Raspberry Pi Pico W

3.8. Making HTTP requests 19

https://makeblock-micropython-api.readthedocs.io/en/latest/public_library/Third-party-libraries/urequests.html

 7
 8 wlan = network.WLAN(network.STA_IF)
 9 wlan.active(True)
10 wlan.connect(ssid, password)
11
12 # Wait for connect or fail
13 max_wait = 10
14 while max_wait > 0:
15 if wlan.status() < 0 or wlan.status() >= 3:
16 break
17 max_wait -= 1
18 print('waiting for connection...')
19 time.sleep(1)
20
21 # Handle connection error
22 if wlan.status() != 3:
23 raise RuntimeError('network connection failed')
24 else:
25 print('connected')
26 status = wlan.ifconfig()
27 print('ip = ' + status[0])
28
29 while True:
30
31 # Do things here, perhaps measure something using a sensor?
32
33 # ...and then define the headers and payloads
34 headers = ...
35 payload = ...
36
37 # Then send it in a try/except block
38 try:
39 print("sending...")
40 response = requests.post("A REMOTE END POINT", headers=headers, data=payload)
41 print("sent (" + str(response.status_code) + "), status = " + str(wlan.status()))
42 response.close()
43 except:
44 print("could not connect (status =" + str(wlan.status()) + ")")
45 if wlan.status() < 0 or wlan.status() >= 3:
46 print("trying to reconnect...")
47 wlan.disconnect()
48 wlan.connect(ssid, password)
49 if wlan.status() == 3:
50 print('connected')
51 else:
52 print('failed')
53
54 time.sleep(5)

Here we handle the possibility that we lose connection to our wireless network and then will seek to reconnect.

3.9. Building HTTP servers

You can build synchronous or asynchronous web servers.

Connecting to the Internet with Raspberry Pi Pico W

3.9. Building HTTP servers 20

3.9.1. A simple server for static pages

You can use the socket library to build a simple web server.

 1 import network
 2 import socket
 3 import time
 4
 5 from machine import Pin
 6
 7 led = Pin(15, Pin.OUT)
 8
 9 ssid = 'A Network'
10 password = 'A Password'
11
12 wlan = network.WLAN(network.STA_IF)
13 wlan.active(True)
14 wlan.connect(ssid, password)
15
16 html = """<!DOCTYPE html>
17 <html>
18 <head> <title>Pico W</title> </head>
19 <body> <h1>Pico W</h1>
20 <p>Hello World</p>
21 </body>
22 </html>
23 """
24
25 # Wait for connect or fail
26 max_wait = 10
27 while max_wait > 0:
28 if wlan.status() < 0 or wlan.status() >= 3:
29 break
30 max_wait -= 1
31 print('waiting for connection...')
32 time.sleep(1)
33
34 # Handle connection error
35 if wlan.status() != 3:
36 raise RuntimeError('network connection failed')
37 else:
38 print('connected')
39 status = wlan.ifconfig()
40 print('ip = ' + status[0])
41
42 # Open socket
43 addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]
44
45 s = socket.socket()
46 s.bind(addr)
47 s.listen(1)
48
49 print('listening on', addr)
50
51 # Listen for connections
52 while True:
53 try:
54 cl, addr = s.accept()
55 print('client connected from', addr)
56 cl_file = cl.makefile('rwb', 0)
57 while True:
58 line = cl_file.readline()

Connecting to the Internet with Raspberry Pi Pico W

3.9. Building HTTP servers 21

59 if not line or line == b'\r\n':
60 break
61 response = html
62 cl.send('HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n')
63 cl.send(response)
64 cl.close()
65
66 except OSError as e:
67 cl.close()
68 print('connection closed')

 NOTE

This example is synchronous, for more robust request handling you should implement the server to handle requests

asynchronously.

3.9.2. Controlling an LED via a web server

Going further, we can implement a RESTful web server that will allow us to control an LED.

Figure 5. The

Raspberry Pi Pico W

with an LED on GP15.

Connecting an LED to GP15 we can turn the LED on and off by using HTTP GET. We can do this by going to

http://192.168.1.X/light/on to turn the LED on, and http://192.168.1.X/light/off to turn the LED off, in our web browser;

where 192.168.1.X is the IP address of our Pico W, which will be printed in the console after it connects to the network.

 1 import network
 2 import socket
 3 import time
 4
 5 from machine import Pin
 6
 7 led = Pin(15, Pin.OUT)
 8
 9 ssid = 'A Network'
10 password = 'A Password'
11
12 wlan = network.WLAN(network.STA_IF)
13 wlan.active(True)

Connecting to the Internet with Raspberry Pi Pico W

3.9. Building HTTP servers 22

http://192.168.1.X/light/on
http://192.168.1.X/light/on
http://192.168.1.X/light/on
http://192.168.1.X/light/on
http://192.168.1.X/light/on
http://192.168.1.X/light/off
http://192.168.1.X/light/off
http://192.168.1.X/light/off
http://192.168.1.X/light/off
http://192.168.1.X/light/off

14 wlan.connect(ssid, password)
15
16 html = """<!DOCTYPE html>
17 <html>
18 <head> <title>Pico W</title> </head>
19 <body> <h1>Pico W</h1>
20 <p>%s</p>
21 </body>
22 </html>
23 """
24
25 # Wait for connect or fail
26 max_wait = 10
27 while max_wait > 0:
28 if wlan.status() < 0 or wlan.status() >= 3:
29 break
30 max_wait -= 1
31 print('waiting for connection...')
32 time.sleep(1)
33
34 # Handle connection error
35 if wlan.status() != 3:
36 raise RuntimeError('network connection failed')
37 else:
38 print('connected')
39 status = wlan.ifconfig()
40 print('ip = ' + status[0])
41
42 # Open socket
43 addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]
44
45 s = socket.socket()
46 s.bind(addr)
47 s.listen(1)
48
49 print('listening on', addr)
50
51 # Listen for connections
52 while True:
53 try:
54 cl, addr = s.accept()
55 print('client connected from', addr)
56 request = cl.recv(1024)
57 print(request)
58
59 request = str(request)
60 led_on = request.find('/light/on')
61 led_off = request.find('/light/off')
62 print('led on = ' + str(led_on))
63 print('led off = ' + str(led_off))
64
65 if led_on == 6:
66 print("led on")
67 led.value(1)
68 stateis = "LED is ON"
69
70 if led_off == 6:
71 print("led off")
72 led.value(0)
73 stateis = "LED is OFF"
74
75 response = html % stateis
76
77 cl.send('HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n')

Connecting to the Internet with Raspberry Pi Pico W

3.9. Building HTTP servers 23

78 cl.send(response)
79 cl.close()
80
81 except OSError as e:
82 cl.close()
83 print('connection closed')

Running the code, we can see the response in our browser.

Figure 6. What we see

in our web browser

when connecting to

our Pico W web server

3.9.3. An asynchronous web server

We can use the uasyncio module to implement the same server, but in this case it will handle HTTP requests

asynchronously rather than blocking.

 1 import network
 2 import socket
 3 import time
 4
 5 from machine import Pin
 6 import uasyncio as asyncio
 7
 8 led = Pin(15, Pin.OUT)
 9 onboard = Pin("LED", Pin.OUT, value=0)
10
11 ssid = 'A Network'
12 password = 'A Password'
13
14 html = """<!DOCTYPE html>
15 <html>
16 <head> <title>Pico W</title> </head>
17 <body> <h1>Pico W</h1>
18 <p>%s</p>
19 </body>
20 </html>
21 """
22
23 wlan = network.WLAN(network.STA_IF)
24
25 def connect_to_network():

Connecting to the Internet with Raspberry Pi Pico W

3.9. Building HTTP servers 24

https://docs.micropython.org/en/latest/library/uasyncio.html

26 wlan.active(True)
27 wlan.config(pm = 0xa11140) # Disable power-save mode
28 wlan.connect(ssid, password)
29
30 max_wait = 10
31 while max_wait > 0:
32 if wlan.status() < 0 or wlan.status() >= 3:
33 break
34 max_wait -= 1
35 print('waiting for connection...')
36 time.sleep(1)
37
38 if wlan.status() != 3:
39 raise RuntimeError('network connection failed')
40 else:
41 print('connected')
42 status = wlan.ifconfig()
43 print('ip = ' + status[0])
44
45 async def serve_client(reader, writer):
46 print("Client connected")
47 request_line = await reader.readline()
48 print("Request:", request_line)
49 # We are not interested in HTTP request headers, skip them
50 while await reader.readline() != b"\r\n":
51 pass
52
53 request = str(request_line)
54 led_on = request.find('/light/on')
55 led_off = request.find('/light/off')
56 print('led on = ' + str(led_on))
57 print('led off = ' + str(led_off))
58
59 stateis = ""
60 if led_on == 6:
61 print("led on")
62 led.value(1)
63 stateis = "LED is ON"
64
65 if led_off == 6:
66 print("led off")
67 led.value(0)
68 stateis = "LED is OFF"
69
70 response = html % stateis
71 writer.write('HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n')
72 writer.write(response)
73
74 await writer.drain()
75 await writer.wait_closed()
76 print("Client disconnected")
77
78 async def main():
79 print('Connecting to Network...')
80 connect_to_network()
81
82 print('Setting up webserver...')
83 asyncio.create_task(asyncio.start_server(serve_client, "0.0.0.0", 80))
84 while True:
85 onboard.on()
86 print("heartbeat")
87 await asyncio.sleep(0.25)
88 onboard.off()
89 await asyncio.sleep(5)

Connecting to the Internet with Raspberry Pi Pico W

3.9. Building HTTP servers 25

90
91 try:
92 asyncio.run(main())
93 finally:
94 asyncio.new_event_loop()

3.10. Running iperf

You can install iperf using the upip tool:

>>> import network
>>> wlan = network.WLAN(network.STA_IF)
>>> wlan.active(True)
>>> wlan.connect('Wireless Network', 'The Password')
>>> import upip
>>> upip.install("uiperf3")

and start an iperf3 client.

 NOTE

The iperf server should be running on another machine.

>>> import uiperf3
>>> uiperf3.client('10.3.15.xx)

CLIENT MODE: TCP sending
Connecting to ('10.3.15.234', 5201)
Interval Transfer Bitrate
 0.00-1.00 sec 48.4 KBytes 397 Kbits/sec
 1.00-2.00 sec 48.4 KBytes 397 Kbits/sec
 2.00-3.00 sec 80.5 KBytes 659 Kbits/sec
 3.00-4.00 sec 100 KBytes 819 Kbits/sec
 4.00-5.00 sec 103 KBytes 845 Kbits/sec
 5.00-6.00 sec 22.7 KBytes 186 Kbits/sec
 6.00-7.00 sec 0.00 Bytes 0.00 bits/sec
 7.00-8.00 sec 0.00 Bytes 0.00 bits/sec
 8.00-9.00 sec 45.3 KBytes 371 Kbits/sec
 9.00-10.00 sec 89.1 KBytes 729 Kbits/sec
 10.00-10.01 sec 0.00 Bytes 0.00 bits/sec
- -
 0.00-10.01 sec 538 KBytes 440 Kbits/sec sender
>>>

3.11. Which hardware am I running on?

There is no direct method for software written in MicroPython to discover whether it is running on a Raspberry Pi Pico or

a Pico W by looking at the hardware. However, you can tell indirectly by looking to see if network functionality is

included in your particular MicroPython firmware:

Connecting to the Internet with Raspberry Pi Pico W

3.10. Running iperf 26

https://docs.micropython.org/en/latest/reference/packages.html
https://docs.micropython.org/en/latest/reference/packages.html

1 import network
2 if hasattr(network, "WLAN"):
3 # the board has WLAN capabilities

Alternatively, you can inspect the MicroPython firmware version to check whether it was compiled for Raspberry Pi Pico

or for Pico W using the sys module.

>>> import sys
>> sys.implementation
(name='micropython', version=(1, 19, 1), _machine='Raspberry Pi Pico W with RP2040', _mpy=4102)

So if 'Pico W' in sys.implementation._machine can be used to detect whether your firmware was compiled for Pico W.

Connecting to the Internet with Raspberry Pi Pico W

3.11. Which hardware am I running on? 27

Chapter 4. About Bluetooth
Raspberry Pi Pico W onboard Bluetooth interface has support for both Bluetooth LE Central and Peripherals roles, along

with support for Bluetooth Classic, and is configurable so you can enable both LE and Classic at the same time, or either

of them individually.

 NOTE

Full details of supported Bluetooth protocols and profiles are availabile on the Blue Kitchen BTStack Github

repository. In addition to the standard BTstack licensing terms, a supplemental licence which covers commercial

use of BTstack with Raspberry Pi Pico W or Raspberry Pi Pico WH is provided.

4.1. More about Bluetooth LE

Bluetooth LE divides the world into peripheral and central devices. Peripheral devices are things like sensors — they’re

typically small, low-powered, and resource-constrained. Central devices are things like mobile phones or laptops,

although these often also operate in peripheral mode.

 NOTE

The Bluetooth LE specification is a sprawling mess of interlocking documents that runs to thousands of pages; the

core standards document is over 2,700 pages just on its own. Proceed with caution.

Peripherals can operate in two modes: either by broadcasting, or when directly connected to a central device. The

broadcast mechanism is one of the big differences between Bluetooth LE and "classic" Bluetooth. Using it, data can be

sent out by the peripheral to any device within range.

This means that a Bluetooth LE peripheral device doesn’t necessarily need to be paired — in Bluetooth LE we’d speak of

it as "connected", rather than "paired" as we did with Bluetooth 2.1 — to a central device to transfer data. In broadcast

mode, the peripheral will periodically send out advertising packets, available to anyone that’s looking for them, for

devices that are acting as "observers".

The standard advertising packet describes the broadcasting device and its capabilities, but it is also capable of

including custom information — sensor data for instance — that you might want to broadcast.

Broadcasting data from your peripheral is a good choice if you’re building something like a weather station, where the

data isn’t sensitive. There is, however, no provision for security when broadcasting, so for personal data, the central

device should connect to the peripheral.

Connections are exclusive. This means that a peripheral cannot be connected to more than one central device at a time.

When a central device connects to a peripheral, the peripheral will stop advertising itself. Other devices will not be able

to see it, or connect to it, until the first connection is terminated. While a peripheral can only be connected to one central

device, a central device can be connected to more than peripheral at the same time.

If you need to exchange data between the peripheral and the central device, then you need to establish a connection

between the two devices.

4.1.1. Protocols and profiles

On top of the protocols that make up the Bluetooth LE standard, the specification offers what are called "profiles".

These are either the basic modes of operation needed by all Bluetooth LE devices, for instance the Generic Access

Profile (GAP) and Generic Attribute Profile (GATT), or profiles covering specific use cases such as the Heart Rate

Profile.

Connecting to the Internet with Raspberry Pi Pico W

4.1. More about Bluetooth LE 28

https://github.com/bluekitchen/btstack#supported-protocols-and-profiles
https://github.com/bluekitchen/btstack
https://github.com/bluekitchen/btstack/blob/master/LICENSE
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/pico_btstack/LICENSE.RP
https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://developer.bluetooth.org/TechnologyOverview/Pages/Profiles.aspx

4.1.2. The GAP

The Generic Access Profile (GAP) is the profile that defines roles for devices, including the peripheral and central roles

we mentioned in the last section, alongside advertising and discovery.

There are two ways to advertise data using GAP: advertising data and scan response packets. While both packets use

the same payload format, and consist of up to 31 bytes of data, only the advertising data packet is mandatory. It is sent

out at a preset advertising interval; the longer the interval, the less power is used. On receipt, listening devices can

request the scan response packet with additional data if it exists. For instance, using custom advertisement data in the

broadcast packets is how Bluetooth beacon standards are implemented.

Once a connection with the peripheral has been made, you will use GATT services and characteristics to communicate

with the peripheral device, and advertising will stop until the connection is terminated.

4.1.3. The GATT

The Generic Attribute Profile (GATT) defines how Bluetooth LE transfers data back and forth between peripheral and

central devices. It defines profiles, which are collections of services. Each service has characteristics which contain

data.

Roles change when moving from GAP to GATT. GATT defines two roles: client and server.

It may seem counterintuitive, but peripheral devices are known as GATT Servers, while the (generally more powerful)

central devices are GATT Clients. Think of it this way. The server has data, and the client wants data. All connections

between the devices are started by the client.

After connecting the client, we can get a list of services offered by the server. Before connecting, the central device has

a potentially incomplete list of services from the advertising data.

4.1.4. Services and characteristics

Services are used to break up the data into logically associated chunks, and consists of a collection of characteristics.

Characteristics are the containers that hold the data associated with a service. Both services and characteristics are

identified by ua nique identifier, known as a UUID. See Section 4.1.5.

Characteristics contain at least two attributes: a characteristic declaration which contains metadata about the data, and

the characteristic value which contains the data itself. The characteristic can also contain additional descriptors to

expand on the metadata. Together, the declaration, value and any optional descriptors form a bundle than make up a

characteristic.

Characteristics can be defined as read or write. Characteristics are read by the client using a read request, with the

returned value of the request being the characteristic value. Characteristic values can be written using a write request.

The server returns a confirmation after the value is written. There is an additional write property called write command.

When a characteristic value is written with a write command, the server does not send any response back to the client.

Write command is sometimes called write without response.

Two additional properties are notify and indicate. Both of these are server-initiated communication. A client subscribes

to be notified when a characteristic’s value changes. When a change occurs, the server notifies the client by sending the

new value. An indication is similar to a notification, except that the client must acknowledge the receipt of the

indication.

Characteristics can have multiple properties. For example one characteristic could allow read, write, write command,

and notify.

Connecting to the Internet with Raspberry Pi Pico W

4.1. More about Bluetooth LE 29

4.1.5. UUIDs

Bluetooth uses Universally Unique Identifiers (UUIDs) for many things including services and characteristics. Bluetooth

services that have been approved by the Bluetooth Special Interest Group are assigned 16-bit UUIDs. All other services

and characteristics must use 128-bit UUIDs. 128-bit UUIDs can be generated with tools such as uuidgen, e.g.

$ uuidgen
437121E5-A6F0-43F9-8F8F-4AB73D6CC3EB

It’s fine to reuse UUIDs if there are services and characteristics that meet your needs. If your making your own services,

use 128-bit UUIDs. See the Bluetooth developer site for more information.

Connecting to the Internet with Raspberry Pi Pico W

4.1. More about Bluetooth LE 30

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
https://developer.bluetooth.org

Chapter 5. Working with Bluetooth
and the C SDK
Bluetooth support for Raspberry Pi Pico W has been added to the C/C++ SDK.

Abbreviated instructions for installing the SDK and examples can be found in Section 2.1. For full instructions on how to

get started with the SDK, see the Getting started with Raspberry Pi Pico book.

 NOTE

If you have not previously used an RP2040-based board you can get started by reading Getting started with

Raspberry Pi Pico, while further details about the SDK, along with API-level documentation, can be found in the

Raspberry Pi Pico C/C++ SDK book.

 WARNING

If you have not initialised the tinyusb submodule in your pico-sdk checkout, then USB CDC serial, and other USB

functions and example code, will not work, as the SDK will contain no USB functionality. Similarly, if you have not

initialised the cyw43-driver and lwip submodules in your checkout, then network- and bluetooth-related functionality

will not be enabled.

5.1. An example Bluetooth service

A standalone Bluetooth example, without all the common example build infrastructure, is available in the pico-examples

GitHub repository.

 NOTE

The standalone example code lives in the pico-examples GitHub repository.

Full details of supported Bluetooth protocols and profiles are Blue Kitchen BTStack Github repository.

5.1.1. Creating a temperature service peripheral

The standalone example implements a temperature service.

1 PRIMARY_SERVICE, GAP_SERVICE
2 CHARACTERISTIC, GAP_DEVICE_NAME, READ, "picow_temp"
3
4 PRIMARY_SERVICE, GATT_SERVICE
5 CHARACTERISTIC, GATT_DATABASE_HASH, READ,
6
7 PRIMARY_SERVICE, ORG_BLUETOOTH_SERVICE_ENVIRONMENTAL_SENSING
8 CHARACTERISTIC, ORG_BLUETOOTH_CHARACTERISTIC_TEMPERATURE, READ | NOTIFY | INDICATE | DYNAMIC,

To build this example you should:

Connecting to the Internet with Raspberry Pi Pico W

5.1. An example Bluetooth service 31

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://github.com/raspberrypi/pico-examples/tree/master/pico_w/bt/standalone
https://github.com/raspberrypi/pico-examples#pico-w-bluetooth
https://github.com/bluekitchen/btstack#supported-protocols-and-profiles
https://github.com/bluekitchen/btstack

$ git clone https://github.com/raspberrypi/pico-sdk.git --branch master
$ cd pico-sdk
$ git submodule update --init
$ cd ..
$ git clone https://github.com/raspberrypi/pico-examples.git --branch master
$ cd pico-examples
$ mkdir build
$ cd build
$ export PICO_SDK_PATH=../../pico-sdk
$ cmake -DPICO_BOARD=pico_w ..
Using PICO_SDK_PATH from environment ('../../pico-sdk')
PICO_SDK_PATH is /home/pi/pico/pico-sdk
 .
 .
 .
-- Build files have been written to: /home/pi/pico/pico-examples/build
$ cd pico_w/bt/standalone
$ make

Along with other targets, we have now built two binaries called picow_ble_temp_sensor.uf2 and picow_ble_temp_reader.uf2,

which can be dragged onto the RP2040 USB mass-storage device.

The fastest method to load software onto an RP2040-based board for the first time is by mounting it as a USB mass-

storage device. Doing this allows you to drag a file onto the board to program the flash memory. Go ahead and connect

the Raspberry Pi Pico W to your Raspberry Pi using a micro-USB cable, making sure that you hold down the BOOTSEL

button as you do so, to force it into USB mass-storage mode.

If you are running the Raspberry Pi Desktop, the Raspberry Pi Pico W should automatically mount as a USB mass-

storage device. From here, you can drag and drop the UF2 file onto the mass-storage device. RP2040 will reboot,

unmounting itself as a mass-storage device, and start to run the flashed code.

If you connect to the Bluetooth device using a scanner application on your phone (see Figure 7), you should see a

service entry in the “Environmental Sensing” section. Beneath this, you’ll find a temperature section. You should be able

to read the temperature or subscribe for notifications when the temperature value changes.

Figure 7. The

picow_temp peripheral

in the Punch Through

LightBlue app;

advertising data (left),

services (middle), and

temperature service

(right).

The temperature will show up as a hexadecimal number, e.g. 0x4B0B. This number is a two-byte little-endian

Connecting to the Internet with Raspberry Pi Pico W

5.1. An example Bluetooth service 32

https://apps.apple.com/us/app/lightblue/id557428110

representation of the temperature multiplied by 100. To get the value back in centigrade, you will need to flip this

representation to big-endian (e.g. 0x4B0B becomes 0x0B4B), convert the value to decimal (e.g. 0x0B4B becomes 2891),

and then divide by 100 to get the value in centigrade (here it would be 28.91°C).

5.2. Availability of other example code

More example code is available from the pico-examples GitHub repository. These examples are for the Pico W, and are

only built when PICO_BOARD=pico_w is passed to CMake.

 NOTE

The examples in the pico-examples repository are taken from the Blue Kitchen Bluetooth stack examples.

By default, the Bluetooth examples are only built in one "mode" only (background, poll, or freertos), with the default being

background. This can be changed by passing a mode to CMake when building on the command line, e.g.

-DBTSTACK_EXAMPLE_TYPE=poll.

 NOTE

FreeRTOS versions can only be built if FREERTOS_KERNEL_PATH is defined.

Connecting to the Internet with Raspberry Pi Pico W

5.2. Availability of other example code 33

https://github.com/raspberrypi/pico-examples#pico-w-bluetooth
https://bluekitchen-gmbh.com/btstack/#examples/examples/index.html

Chapter 6. Working with Bluetooth
in MicroPython
 IMPORTANT

Make sure you have the latest version of MicroPython installed, with Bluetooth support enabled. Until Bluetooth

functionality has been upstreamed, a pre-built binary will be availble from the MicroPython section of the

documentation site.

Bluetooth support for Raspberry Pi Pico W has been added to MicroPython. A pre-built binary, which can be downloaded

from the MicroPython section of this documentation website, should serve most use cases and comes with micropython-

lib pre-integrated into the binary.

Pre-built Binary

A pre-built binary of the latest MicroPython firmware is available from the MicroPython section of the

Raspberry Pi documentation site. See Section 3.2 for instruction on installation.

 NOTE

If you have not previously used an RP2040-based board, begin by reading the Raspberry Pi Pico Python SDK book.

 NOTE

More information on using Bluetooth from MicroPython can be found online in the MicroPython documentation.

6.1. Advertsing a Bluetooth service

We can create a custom service in MicroPython and advertise it using the following code:

 1 # Helpers for generating BLE advertising payloads
 2
 3 from micropython import const
 4 import struct
 5 import bluetooth
 6
 7 # Advertising payloads are repeated packets of the following form:
 8 # 1 byte data length (N + 1)
 9 # 1 byte type (see constants below)
10 # N bytes type-specific data
11
12 _ADV_TYPE_FLAGS = const(0x01)
13 _ADV_TYPE_NAME = const(0x09)
14 _ADV_TYPE_UUID16_COMPLETE = const(0x3)
15 _ADV_TYPE_UUID32_COMPLETE = const(0x5)
16 _ADV_TYPE_UUID128_COMPLETE = const(0x7)
17 _ADV_TYPE_UUID16_MORE = const(0x2)
18 _ADV_TYPE_UUID32_MORE = const(0x4)
19 _ADV_TYPE_UUID128_MORE = const(0x6)
20 _ADV_TYPE_APPEARANCE = const(0x19)
21

Connecting to the Internet with Raspberry Pi Pico W

6.1. Advertsing a Bluetooth service 34

https://www.raspberrypi.com/documentation/microcontrollers/
https://www.raspberrypi.com/documentation/microcontrollers/
https://www.raspberrypi.com/documentation/microcontrollers/
https://www.raspberrypi.com/documentation/microcontrollers/
https://www.raspberrypi.com/documentation/microcontrollers/
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf
https://docs.micropython.org/en/latest/library/bluetooth.html

22
23 # Generate a payload to be passed to gap_advertise(adv_data=...).
24 def advertising_payload(limited_disc=False, br_edr=False, name=None, services=None,
 appearance=0):
25 payload = bytearray()
26
27 def _append(adv_type, value):
28 nonlocal payload
29 payload += struct.pack("BB", len(value) + 1, adv_type) + value
30
31 _append(
32 _ADV_TYPE_FLAGS,
33 struct.pack("B", (0x01 if limited_disc else 0x02) + (0x18 if br_edr else 0x04)),
34)
35
36 if name:
37 _append(_ADV_TYPE_NAME, name)
38
39 if services:
40 for uuid in services:
41 b = bytes(uuid)
42 if len(b) == 2:
43 _append(_ADV_TYPE_UUID16_COMPLETE, b)
44 elif len(b) == 4:
45 _append(_ADV_TYPE_UUID32_COMPLETE, b)
46 elif len(b) == 16:
47 _append(_ADV_TYPE_UUID128_COMPLETE, b)
48
49 # See org.bluetooth.characteristic.gap.appearance.xml
50 if appearance:
51 _append(_ADV_TYPE_APPEARANCE, struct.pack("<h", appearance))
52
53 return payload
54
55
56 def decode_field(payload, adv_type):
57 i = 0
58 result = []
59 while i + 1 < len(payload):
60 if payload[i + 1] == adv_type:
61 result.append(payload[i + 2 : i + payload[i] + 1])
62 i += 1 + payload[i]
63 return result
64
65
66 def decode_name(payload):
67 n = decode_field(payload, _ADV_TYPE_NAME)
68 return str(n[0], "utf-8") if n else ""
69
70
71 def decode_services(payload):
72 services = []
73 for u in decode_field(payload, _ADV_TYPE_UUID16_COMPLETE):
74 services.append(bluetooth.UUID(struct.unpack("<h", u)[0]))
75 for u in decode_field(payload, _ADV_TYPE_UUID32_COMPLETE):
76 services.append(bluetooth.UUID(struct.unpack("<d", u)[0]))
77 for u in decode_field(payload, _ADV_TYPE_UUID128_COMPLETE):
78 services.append(bluetooth.UUID(u))
79 return services
80
81
82 def demo():
83 payload = advertising_payload(
84 name="micropython",

Connecting to the Internet with Raspberry Pi Pico W

6.1. Advertsing a Bluetooth service 35

85 services=[bluetooth.UUID(0x181A), bluetooth.UUID("6E400001-B5A3-F393-E0A9-
 E50E24DCCA9E")],
86)
87 print(payload)
88 print(decode_name(payload))
89 print(decode_services(payload))
90
91
92 if __name__ == "__main__":
93 demo()

Full details of supported Bluetooth protocols and profiles are Blue Kitchen BTStack Github repository.

6.2. An example Bluetooth service

We can use the generic peripheral advertising code in Section 6.1 to help implement an example service.

6.2.1. Creating a temperature service peripheral

This example demonstrates a simple temperature sensor peripheral. The sensor’s local value is updated every ten

seconds, and any connected central device will be notified of the change.

 1 import bluetooth
 2 import random
 3 import struct
 4 import time
 5 import machine
 6 import ubinascii
 7 from ble_advertising import advertising_payload
 8 from micropython import const
 9 from machine import Pin
 10
 11 _IRQ_CENTRAL_CONNECT = const(1)
 12 _IRQ_CENTRAL_DISCONNECT = const(2)
 13 _IRQ_GATTS_INDICATE_DONE = const(20)
 14
 15 _FLAG_READ = const(0x0002)
 16 _FLAG_NOTIFY = const(0x0010)
 17 _FLAG_INDICATE = const(0x0020)
 18
 19 # org.bluetooth.service.environmental_sensing
 20 _ENV_SENSE_UUID = bluetooth.UUID(0x181A)
 21
 22 # org.bluetooth.characteristic.temperature
 23 _TEMP_CHAR = (
 24 bluetooth.UUID(0x2A6E),
 25 _FLAG_READ | _FLAG_NOTIFY | _FLAG_INDICATE,
 26)
 27 _ENV_SENSE_SERVICE = (
 28 _ENV_SENSE_UUID,
 29 (_TEMP_CHAR,),
 30)
 31
 32 # org.bluetooth.characteristic.gap.appearance.xml
 33 _ADV_APPEARANCE_GENERIC_THERMOMETER = const(768)
 34

Connecting to the Internet with Raspberry Pi Pico W

6.2. An example Bluetooth service 36

https://github.com/bluekitchen/btstack#supported-protocols-and-profiles
https://github.com/bluekitchen/btstack

 35 class BLETemperature:
 36 def __init__(self, ble, name=""):
 37 self._sensor_temp = machine.ADC(4)
 38 self._ble = ble
 39 self._ble.active(True)
 40 self._ble.irq(self._irq)
 41 ((self._handle,),) = self._ble.gatts_register_services((_ENV_SENSE_SERVICE,))
 42 self._connections = set()
 43 if len(name) == 0:
 44 name = 'Pico %s' % ubinascii.hexlify(self._ble.config('mac')[1],':').decode
 ().upper()
 45 print('Sensor name %s' % name)
 46 self._payload = advertising_payload(
 47 name=name, services=[_ENV_SENSE_UUID]
 48)
 49 self._advertise()
 50
 51 def _irq(self, event, data):
 52 # Track connections so we can send notifications.
 53 if event == _IRQ_CENTRAL_CONNECT:
 54 conn_handle, _, _ = data
 55 self._connections.add(conn_handle)
 56 elif event == _IRQ_CENTRAL_DISCONNECT:
 57 conn_handle, _, _ = data
 58 self._connections.remove(conn_handle)
 59 # Start advertising again to allow a new connection.
 60 self._advertise()
 61 elif event == _IRQ_GATTS_INDICATE_DONE:
 62 conn_handle, value_handle, status = data
 63
 64 def update_temperature(self, notify=False, indicate=False):
 65 # Write the local value, ready for a central to read.
 66 temp_deg_c = self._get_temp()
 67 print("write temp %.2f degc" % temp_deg_c);
 68 self._ble.gatts_write(self._handle, struct.pack("<h", int(temp_deg_c * 100)))
 69 if notify or indicate:
 70 for conn_handle in self._connections:
 71 if notify:
 72 # Notify connected centrals.
 73 self._ble.gatts_notify(conn_handle, self._handle)
 74 if indicate:
 75 # Indicate connected centrals.
 76 self._ble.gatts_indicate(conn_handle, self._handle)
 77
 78 def _advertise(self, interval_us=500000):
 79 self._ble.gap_advertise(interval_us, adv_data=self._payload)
 80
 81 def _get_temp(self):
 82 conversion_factor = 3.3 / (65535)
 83 reading = self._sensor_temp.read_u16() * conversion_factor
 84
 85 return 27 - (reading - 0.706) / 0.001721 ①
 86
 87 def demo():
 88 ble = bluetooth.BLE()
 89 temp = BLETemperature(ble)
 90 counter = 0
 91 led = Pin('LED', Pin.OUT)
 92 while True:
 93 if counter % 10 == 0:
 94 temp.update_temperature(notify=True, indicate=False)
 95 led.toggle()
 96 time.sleep_ms(1000)
 97 counter += 1

Connecting to the Internet with Raspberry Pi Pico W

6.2. An example Bluetooth service 37

 98
 99 if __name__ == "__main__":
100 demo()

① The temperature sensor measures the Vbe voltage of a biased bipolar diode, connected to the fifth ADC channel. Typically, Vbe =

0.706V at 27°C, with a slope of -1.721mV (0.001721) per degree.

 NOTE

This example service imports code from Section 6.1.

If you connect to the Bluetooth device using a scanner application on your phone (see Figure 8) you should see a

service entry in the “Environmental sensing” section. Beneath this, there’s a temperature section. You should be able to

read the temperature or subscribe for notifications when the temperature value changes.

Figure 8. The mpy-temp

peripheral in the

Punch Through

LightBlue app:

advertising data (left),

services (middle), and

temperature service

(right).

The temperature will show up as a hexadecimal number, e.g. 0x4B0B. This number is a two-byte, little-endian

representation of the temperature multiplied by 100. To get the value back in centigrade, you will need flip this

representation to big-endian (e.g. 0x4B0B becomes 0x0B4B), convert the value to decimal (e.g. 0x0B4B becomes 2891),

and then divide by 100 to get the value in centigrade (here it would be 28.91°C).

6.2.2. Implementing a central device

While it is likely that the main use-case for BLE on Pico W will be as a peripheral offering services, it is also possible to

use your Pico W as a central device. Here we implement a central device that finds and connects to temperature

peripherals (see Section 6.2.1).

 1 # This example finds and connects to a BLE temperature sensor (e.g. the one in
 ble_temperature.py).
 2
 3 import bluetooth
 4 import random

Connecting to the Internet with Raspberry Pi Pico W

6.2. An example Bluetooth service 38

https://apps.apple.com/us/app/lightblue/id557428110

 5 import struct
 6 import time
 7 import micropython
 8 from ble_advertising import decode_services, decode_name
 9 from micropython import const
 10 from machine import Pin
 11
 12 _IRQ_CENTRAL_CONNECT = const(1)
 13 _IRQ_CENTRAL_DISCONNECT = const(2)
 14 _IRQ_GATTS_WRITE = const(3)
 15 _IRQ_GATTS_READ_REQUEST = const(4)
 16 _IRQ_SCAN_RESULT = const(5)
 17 _IRQ_SCAN_DONE = const(6)
 18 _IRQ_PERIPHERAL_CONNECT = const(7)
 19 _IRQ_PERIPHERAL_DISCONNECT = const(8)
 20 _IRQ_GATTC_SERVICE_RESULT = const(9)
 21 _IRQ_GATTC_SERVICE_DONE = const(10)
 22 _IRQ_GATTC_CHARACTERISTIC_RESULT = const(11)
 23 _IRQ_GATTC_CHARACTERISTIC_DONE = const(12)
 24 _IRQ_GATTC_DESCRIPTOR_RESULT = const(13)
 25 _IRQ_GATTC_DESCRIPTOR_DONE = const(14)
 26 _IRQ_GATTC_READ_RESULT = const(15)
 27 _IRQ_GATTC_READ_DONE = const(16)
 28 _IRQ_GATTC_WRITE_DONE = const(17)
 29 _IRQ_GATTC_NOTIFY = const(18)
 30 _IRQ_GATTC_INDICATE = const(19)
 31
 32 _ADV_IND = const(0x00)
 33 _ADV_DIRECT_IND = const(0x01)
 34 _ADV_SCAN_IND = const(0x02)
 35 _ADV_NONCONN_IND = const(0x03)
 36
 37 # org.bluetooth.service.environmental_sensing
 38 _ENV_SENSE_UUID = bluetooth.UUID(0x181A)
 39 # org.bluetooth.characteristic.temperature
 40 _TEMP_UUID = bluetooth.UUID(0x2A6E)
 41 _TEMP_CHAR = (
 42 _TEMP_UUID,
 43 bluetooth.FLAG_READ | bluetooth.FLAG_NOTIFY,
 44)
 45 _ENV_SENSE_SERVICE = (
 46 _ENV_SENSE_UUID,
 47 (_TEMP_CHAR,),
 48)
 49
 50 class BLETemperatureCentral:
 51 def __init__(self, ble):
 52 self._ble = ble
 53 self._ble.active(True)
 54 self._ble.irq(self._irq)
 55 self._reset()
 56 self._led = Pin('LED', Pin.OUT)
 57
 58 def _reset(self):
 59 # Cached name and address from a successful scan.
 60 self._name = None
 61 self._addr_type = None
 62 self._addr = None
 63
 64 # Cached value (if we have one)
 65 self._value = None
 66
 67 # Callbacks for completion of various operations.
 68 # These reset back to None after being invoked.

Connecting to the Internet with Raspberry Pi Pico W

6.2. An example Bluetooth service 39

 69 self._scan_callback = None
 70 self._conn_callback = None
 71 self._read_callback = None
 72
 73 # Persistent callback for when new data is notified from the device.
 74 self._notify_callback = None
 75
 76 # Connected device.
 77 self._conn_handle = None
 78 self._start_handle = None
 79 self._end_handle = None
 80 self._value_handle = None
 81
 82 def _irq(self, event, data):
 83 if event == _IRQ_SCAN_RESULT:
 84 addr_type, addr, adv_type, rssi, adv_data = data
 85 if adv_type in (_ADV_IND, _ADV_DIRECT_IND):
 86 type_list = decode_services(adv_data)
 87 if _ENV_SENSE_UUID in type_list:
 88 # Found a potential device, remember it and stop scanning.
 89 self._addr_type = addr_type
 90 self._addr = bytes(addr) # Note: addr buffer is owned by caller so need
 to copy it.
 91 self._name = decode_name(adv_data) or "?"
 92 self._ble.gap_scan(None)
 93
 94 elif event == _IRQ_SCAN_DONE:
 95 if self._scan_callback:
 96 if self._addr:
 97 # Found a device during the scan (and the scan was explicitly stopped).
 98 self._scan_callback(self._addr_type, self._addr, self._name)
 99 self._scan_callback = None
100 else:
101 # Scan timed out.
102 self._scan_callback(None, None, None)
103
104 elif event == _IRQ_PERIPHERAL_CONNECT:
105 # Connect successful.
106 conn_handle, addr_type, addr = data
107 if addr_type == self._addr_type and addr == self._addr:
108 self._conn_handle = conn_handle
109 self._ble.gattc_discover_services(self._conn_handle)
110
111 elif event == _IRQ_PERIPHERAL_DISCONNECT:
112 # Disconnect (either initiated by us or the remote end).
113 conn_handle, _, _ = data
114 if conn_handle == self._conn_handle:
115 # If it was initiated by us, it'll already be reset.
116 self._reset()
117
118 elif event == _IRQ_GATTC_SERVICE_RESULT:
119 # Connected device returned a service.
120 conn_handle, start_handle, end_handle, uuid = data
121 if conn_handle == self._conn_handle and uuid == _ENV_SENSE_UUID:
122 self._start_handle, self._end_handle = start_handle, end_handle
123
124 elif event == _IRQ_GATTC_SERVICE_DONE:
125 # Service query complete.
126 if self._start_handle and self._end_handle:
127 self._ble.gattc_discover_characteristics(
128 self._conn_handle, self._start_handle, self._end_handle
129)
130 else:
131 print("Failed to find environmental sensing service.")

Connecting to the Internet with Raspberry Pi Pico W

6.2. An example Bluetooth service 40

132
133 elif event == _IRQ_GATTC_CHARACTERISTIC_RESULT:
134 # Connected device returned a characteristic.
135 conn_handle, def_handle, value_handle, properties, uuid = data
136 if conn_handle == self._conn_handle and uuid == _TEMP_UUID:
137 self._value_handle = value_handle
138
139 elif event == _IRQ_GATTC_CHARACTERISTIC_DONE:
140 # Characteristic query complete.
141 if self._value_handle:
142 # We've finished connecting and discovering device, fire the connect callback.
143 if self._conn_callback:
144 self._conn_callback()
145 else:
146 print("Failed to find temperature characteristic.")
147
148 elif event == _IRQ_GATTC_READ_RESULT:
149 # A read completed successfully.
150 conn_handle, value_handle, char_data = data
151 if conn_handle == self._conn_handle and value_handle == self._value_handle:
152 self._update_value(char_data)
153 if self._read_callback:
154 self._read_callback(self._value)
155 self._read_callback = None
156
157 elif event == _IRQ_GATTC_READ_DONE:
158 # Read completed (no-op).
159 conn_handle, value_handle, status = data
160
161 elif event == _IRQ_GATTC_NOTIFY:
162 # The ble_temperature.py demo periodically notifies its value.
163 conn_handle, value_handle, notify_data = data
164 if conn_handle == self._conn_handle and value_handle == self._value_handle:
165 self._update_value(notify_data)
166 if self._notify_callback:
167 self._notify_callback(self._value)
168
169 # Returns true if we've successfully connected and discovered characteristics.
170 def is_connected(self):
171 return self._conn_handle is not None and self._value_handle is not None
172
173 # Find a device advertising the environmental sensor service.
174 def scan(self, callback=None):
175 self._addr_type = None
176 self._addr = None
177 self._scan_callback = callback
178 self._ble.gap_scan(2000, 30000, 30000)
179
180 # Connect to the specified device (otherwise use cached address from a scan).
181 def connect(self, addr_type=None, addr=None, callback=None):
182 self._addr_type = addr_type or self._addr_type
183 self._addr = addr or self._addr
184 self._conn_callback = callback
185 if self._addr_type is None or self._addr is None:
186 return False
187 self._ble.gap_connect(self._addr_type, self._addr)
188 return True
189
190 # Disconnect from current device.
191 def disconnect(self):
192 if not self._conn_handle:
193 return
194 self._ble.gap_disconnect(self._conn_handle)
195 self._reset()

Connecting to the Internet with Raspberry Pi Pico W

6.2. An example Bluetooth service 41

196
197 # Issues an (asynchronous) read, will invoke callback with data.
198 def read(self, callback):
199 if not self.is_connected():
200 return
201 self._read_callback = callback
202 try:
203 self._ble.gattc_read(self._conn_handle, self._value_handle)
204 except OSError as error:
205 print(error)
206
207 # Sets a callback to be invoked when the device notifies us.
208 def on_notify(self, callback):
209 self._notify_callback = callback
210
211 def _update_value(self, data):
212 # Data is sint16 in degrees Celsius with a resolution of 0.01 degrees Celsius.
213 try:
214 self._value = struct.unpack("<h", data)[0] / 100
215 except OSError as error:
216 print(error)
217
218 def value(self):
219 return self._value
220
221 def sleep_ms_flash_led(self, flash_count, delay_ms):
222 self._led.off()
223 while(delay_ms > 0):
224 for i in range(flash_count):
225 self._led.on()
226 time.sleep_ms(100)
227 self._led.off()
228 time.sleep_ms(100)
229 delay_ms -= 200
230 time.sleep_ms(1000)
231 delay_ms -= 1000
232
233 def print_temp(result):
234 print("read temp: %.2f degc" % result)
235
236 def demo(ble, central):
237 not_found = False
238
239 def on_scan(addr_type, addr, name):
240 if addr_type is not None:
241 print("Found sensor: %s" % name)
242 central.connect()
243 else:
244 nonlocal not_found
245 not_found = True
246 print("No sensor found.")
247
248 central.scan(callback=on_scan)
249
250 # Wait for connection...
251 while not central.is_connected():
252 time.sleep_ms(100)
253 if not_found:
254 return
255
256 print("Connected")
257
258 # Explicitly issue reads
259 while central.is_connected():

Connecting to the Internet with Raspberry Pi Pico W

6.2. An example Bluetooth service 42

260 central.read(callback=print_temp)
261 sleep_ms_flash_led(central, 2, 2000)
262
263 print("Disconnected")
264
265 if __name__ == "__main__":
266 ble = bluetooth.BLE()
267 central = BLETemperatureCentral(ble)
268 while(True):
269 demo(ble, central)
270 sleep_ms_flash_led(central, 1, 10000)

 NOTE

This example imports code from Section 6.1.

Copy ble_advertising.py and picow_ble_temp_reader.py to a second Raspberry Pi Pico W. It should start running, and the

on-board LED will flash briefly once repeatedly if it can’t find a device to connect to. Once it finds another device running

the picow_ble_temp_sensor.py, it will repeatedly flash twice, quickly, when it is connected and reading the temperature over

Bluetooth.

Connecting to the Internet with Raspberry Pi Pico W

6.2. An example Bluetooth service 43

Appendix A: Building MicroPython
from source
Before you can proceed with building a MicroPython UF2 for Raspberry Pi Pico W from source, you should install the

normal dependencies to build MicroPython. See Section 1.3 of the Raspberry Pi Pico Python SDK book for full details.

Afterwards you should clone the micropython and micropython-lib repositories.

$ mkdir pico_w
$ cd pico_w
$ git clone https://github.com/micropython/micropython.git --branch master
$ git clone https://github.com/micropython/micropython-lib.git --branch master

 NOTE

Putting micropython-lib side-by-side with your MicroPython checkout will mean that it is automatically pulled into

your MicroPython build, and libraries in micropython-lib will be "pre-added" to the list of modules available by default

on your Pico W device.

Then build MicroPython:

$ cd micropython
$ make -C ports/rp2 BOARD=PICO_W submodules
$ make -C mpy-cross
$ cd ports/rp2
$ make BOARD=PICO_W

If everything went well, there will be a new directory called build-PICO_W (that’s ports/rp2/build-PICO_W relative to the top-

level micropython directory), which contains the new firmware binaries. Drag and drop the firmware.uf2 onto the RPI-RP2

drive that pops up once your Raspberry Pi Pico W is in BOOTSEL mode.

Connecting to the Internet with Raspberry Pi Pico W

Appendix A: Building MicroPython from source 44

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf

Appendix B: Documentation release
history

Table 1.

Documentation

release history

Release Date Description

1.0 30 Jun 2022 • Initial release

Pico and Pico W databooks combined into a unified release history

2.0 01 Dec 2022 • Minor updates and corrections

• Added RP2040 availability information

• Added RP2040 storage conditions and thermal characteristics

• Replace SDK library documentation with links to the online

version

• Updated Picoprobe build and usage instructions

2.1 03 Mar 2023 • A large number of minor updates and corrections

• SMT footprint of Pico W corrected

• Updated for the 1.5.0 release of the Raspberry Pi Pico C SDK

• Added errata E15

• Added documentation around the new Pico Windows Installer

• Added documentation around the Pico-W-Go extension for

Python development

• Added a wireless networking example to the Python

documentation

• Added package marking specifications

• Added RP2040 baseline power consumption figures

• Added antenna keep out diagram to Pico W datasheet

2.2 14 Jun 2023 • Minor updates and corrections

• Updated for the 1.5.1 release of the Raspberry Pi Pico C SDK

• Documentation around Bluetooth support for Pico W

The latest release can be found at https://datasheets.raspberrypi.com/picow/connecting-to-the-internet-with-pico-

w.pdf.

Connecting to the Internet with Raspberry Pi Pico W

Appendix B: Documentation release history 45

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e15
https://github.com/raspberrypi/pico-setup-windows
https://marketplace.visualstudio.com/items?itemName=paulober.pico-w-go
https://datasheets.raspberrypi.com/picow/connecting-to-the-internet-with-pico-w.pdf
https://datasheets.raspberrypi.com/picow/connecting-to-the-internet-with-pico-w.pdf

	Connecting to the Internet with Raspberry Pi Pico W
	Colophon
	Legal disclaimer notice
	Table of contents

	Chapter 1. About Raspberry Pi Pico W
	Chapter 2. Getting on the internet with the C SDK
	2.1. Installing the SDK and examples
	2.2. Building an SDK example
	2.3. Creating your own project
	2.3.1. Going further

	2.4. Which hardware am I running on?

	Chapter 3. Getting on the internet with MicroPython
	3.1. Getting MicroPython for Raspberry Pi Pico W
	3.2. Installing MicroPython on Raspberry Pi Pico W
	3.3. Connecting from a Raspberry Pi over USB
	3.3.1. Using an integrated development environment (IDE)
	3.3.2. Remote access via serial port

	3.4. The on-board LED
	3.5. Installing modules
	3.6. Connecting to a wireless network
	3.6.1. Connection status codes
	3.6.2. Setting the country
	3.6.3. Power-saving mode

	3.7. The MAC address
	3.8. Making HTTP requests
	3.8.1. HTTP with sockets
	3.8.2. HTTP with urequests
	3.8.3. Ensuring robust connections

	3.9. Building HTTP servers
	3.9.1. A simple server for static pages
	3.9.2. Controlling an LED via a web server
	3.9.3. An asynchronous web server

	3.10. Running iperf
	3.11. Which hardware am I running on?

	Chapter 4. About Bluetooth
	4.1. More about Bluetooth LE
	4.1.1. Protocols and profiles
	4.1.2. The GAP
	4.1.3. The GATT
	4.1.4. Services and characteristics
	4.1.5. UUIDs

	Chapter 5. Working with Bluetooth and the C SDK
	5.1. An example Bluetooth service
	5.1.1. Creating a temperature service peripheral

	5.2. Availability of other example code

	Chapter 6. Working with Bluetooth in MicroPython
	6.1. Advertsing a Bluetooth service
	6.2. An example Bluetooth service
	6.2.1. Creating a temperature service peripheral
	6.2.2. Implementing a central device

	Appendix A: Building MicroPython from source
	Appendix B: Documentation release history

